Ακολούθησέ μας

Implementing a SQL Data Warehouse with Microsoft SQL Server

Implementing a SQL Data Warehouse with Microsoft SQL Server

Συνοπτικό πρόγραμμα:

Module 1: Introduction to Data Warehousing This module describes data warehouse concepts and architecture consideration.

Lessons:

  • Overview of Data Warehousing
  • Considerations for a Data Warehouse Solution

Lab:

  • Exploring a Data Warehouse Solution
  • Exploring data sources
  • Exploring an ETL process
  • Exploring a data warehouse

Module 2: Planning Data Warehouse Infrastructure This module describes the main hardware considerations for building a data warehouse.

Lessons:

Considerations for data warehouse infrastructure
Planning data warehouse hardware.

Lab :

  • Planning Data Warehouse Infrastructure
  • Planning data warehouse hardware

Module 3: Designing and Implementing a Data Warehouse This module describes how you go about designing and implementing a schema for a data warehouse

Lessons:

  • Designing dimension tables
  • Designing fact tables
  • Physical Design for a Data Warehouse

Lab :

  • Implementing a Data Warehouse Schema
  • Implementing a star schema
  • Implementing a snowflake schema
  • Implementing a time dimension table
  • Module 4: Columnstore Indexes This module introduces Columnstore Indexes. Lessons
  • Introduction to Columnstore Indexes
  • Creating Columnstore Indexes
  • Working with Columnstore Indexes

Lab :

  • Using Columnstore Indexes
  • Create a Columnstore index on the FactProductInventory table
  • Create a Columnstore index on the FactInternetSales table
  • Create a memory optimized Columnstore table

Module 5: Implementing an Azure SQL Data Warehouse This module describes Azure SQL Data Warehouses and how to implement them.

Lessons:

  • Advantages of Azure SQL Data Warehouse
  • Implementing an Azure SQL Data Warehouse
  • Developing an Azure SQL Data Warehouse
  • Migrating to an Azure SQ Data Warehouse
  • Copying data with the Azure data factory

Lab :

  • Implementing an Azure SQL Data Warehouse
  • Create an Azure SQL data warehouse database
  • Migrate to an Azure SQL Data warehouse database
  • Copy data with the Azure data factory

Module 6: Creating an ETL Solution At the end of this module you will be able to implement data flow in a SSIS package

Lessons:

  • Introduction to ETL with SSIS
  • Exploring Source Data
  • Implementing Data Flow

Lab: 

  • Implementing Data Flow in an SSIS Package
  • Exploring source data
  • Transferring data by using a data row task
  • Using transformation components in a data row

Module 7: Implementing Control Flow in an SSIS Package This module describes implementing control flow in an SSIS package.

Lessons:

  • Introduction to Control Flow
  • Creating Dynamic Packages
  • Using Containers
  • Managing consistency.

Lab:

  • Implementing Control Flow in an SSIS Package
  • Using tasks and precedence in a control flow
  • Using variables and parameters
  • Using containers

Lab :

  • Using Transactions and Checkpoints
  • Using transactions
  • Using checkpoints

Module 8: Debugging and Troubleshooting SSIS Packages This module describes how to debug and troubleshoot SSIS packages. 

Lessons:

  • Debugging an SSIS Package
  • Logging SSIS Package Events
  • Handling Errors in an SSIS Package

Lab:

  • Debugging and Troubleshooting an SSIS Package
  • Debugging an SSIS package
  • Logging SSIS package execution
  • Implementing an event handler
  • Handling errors in data flow

Module 9: Implementing a Data Extraction Solution This module describes how to implement an SSIS solution that supports incremental DW loads and changing data.

Lessons:

  • Introduction to Incremental ETL
  • Extracting Modified Data
  • Loading modified data
  • Temporal Tables

Lab:

  • Extracting Modified Data
  • Using a datetime column to incrementally extract data
  • Using change data capture
  • Using the CDC control task
  • Using change tracking

Lab:

  • Loading a data warehouse
  • Loading data from CDC output tables
  • Using a lookup transformation to insert or update dimension data
  • Implementing a slowly changing dimension
  • Using the merge statement

Module 10: Enforcing Data Quality This module describes how to implement data cleansing by using Microsoft Data Quality services.

Lessons:

  • Introduction to Data Quality
  • Using Data Quality Services to Cleanse Data
  • Using Data Quality Services to Match Data

Lab:

  • Cleansing Data
  • Creating a DQS knowledge base
  • Using a DQS project to cleanse data
  • Using DQS in an SSIS package

Lab:

  • De-duplicating Data
  • Creating a matching policy
  • Using a DS project to match data

Module 11: Using Master Data Services This module describes how to implement master data services to enforce data integrity at source.

Lessons:

  • Introduction to Master Data Services
  • Implementing a Master Data Services Model
  • Hierarchies and collections
  • Creating a Master Data Hub

Lab:

  • Implementing Master Data Services
  • Creating a master data services model
  • Using the master data services add-in for Excel
  • Enforcing business rules
  • Loading data into a model
  • Consuming master data services data

Module 12: Extending SQL Server Integration Services (SSIS)This module describes how to extend SSIS with custom scripts and components.

Lessons:

  • Using scripting in SSIS
  • Using custom components in SSIS

Lab:

  •  Using scripts
  • Using a script task

Module 13: Deploying and Configuring SSIS Packages This module describes how to deploy and configure SSIS packages.

Lessons:

  • Overview of SSIS Deployment
  • Deploying SSIS Projects
  • Planning SSIS Package Execution

Lab:

  • Deploying and Configuring SSIS Packages
  • Creating an SSIS catalog
  • Deploying an SSIS project
  • Creating environments for an SSIS solution
  • Running an SSIS package in SQL server management studio
  • Scheduling SSIS packages with SQL server agent

Module 14: Consuming Data in a Data Warehouse This module describes how to debug and troubleshoot SSIS packages.

Lessons:

  • Introduction to Business Intelligence
  • An Introduction to Data Analysis
  • Introduction to reporting
  • Analyzing Data with Azure SQL Data Warehouse

Lab:

  • Using a data warehouse
  • Exploring a reporting services report
  • Exploring a PowerPivot workbook
  • Exploring a power view report

Διάρκεια

40 ώρες

Εκδήλωση ενδιαφέροντος

Ενδιαφέρεστε για τις υπηρεσίες μας; Επικοινωνήστε άμεσα μαζί μας για να σας καθοδηγήσουμε κατάλληλα.